A Comparison of Neural Projection Techniques Applied to Intrusion Detection Systems
نویسندگان
چکیده
This paper reviews one nonlinear and two linear projection architectures, in the context of a comparative study, which are used as either alternative or complementary tools in the identification and analysis of anomalous situations by Intrusion Detection Systems (IDSs). Three neural projection models are empirically compared, using real traffic data sets in an IDS framework. The specific multivariate data analysis techniques that drive these models are able to identify different factors or components by studying higher order statistics variance and kurtosis in order to display the most interesting projections or dimensions. Our research describes how a network manager is able to diagnose anomalous behaviour in data traffic through visual projection of network traffic. We also emphasize the importance of the timedependent variable in the application of these projection methods.
منابع مشابه
A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural network
Abstract— In order to provide complete security in a computer system and to prevent intrusion, intrusion detection systems (IDS) are required to detect if an attacker crosses the firewall, antivirus, and other security devices. Data and options to deal with it. In this paper, we are trying to provide a model for combining types of attacks on public data using combined methods of genetic algorit...
متن کامل